

PEM-Electrolysis – a technological bridge for a more flexible energy system Gaëlle Hotellier, Head of Hydrogen Solutions

Whereto?

Yesterday

Tomorrow

Components and tasks for a future energy system

Managing increasingly complex energy systems

Cross-regional electricity transfer and integration of distributed generation

Grid stability and system efficiency

Cost-efficient use of conventional and renewable energy

Pushing the integration of infrastructures

Options to address large scale "grid storage" are limited

Segmentation of electrical energy storage

Key statements

- There is no universal solution for electrical storage
- Large scale storage can only be addressed by pumped hydro, compressed air (CAES) and chemical storage media like hydrogen and methane
- The potential to extend pumped hydro capacities is very limited
- CAES has limitations in operational flexibility and capacity

Hydrogen is the only option to implement energy capacities > 10 GWh

Unrestricted / © Siemens AG 2014. All Rights Reserved.

PEM electrolysis enables conversion of electrical into chemical energy

H₂ drives the convergence between energy & industrial markets

PEM* water electrolyzer technology – a perfect match with renewable energy requirements

Key statements

- High dynamic performance
- Compact design, small footprint
- Simple cold-start capability

- High pressure operation (less compression costs)
- Rapid load changes
- High stability / low degradation

Electrolyzer type	PEM
1 electrolyte	nahmar mambrana
2 separator	polymer memorane
3 catalyst	platinum + others
4 frame + bipolar plate	metal sheet

PEM technology has numerous important advantages regarding the system properties

Unrestricted / © Siemens AG 2014. All Rights Reserved.

* Proton-Exchange-Membrane

SILYZER 200 – a PEM Electrolysis System made by Siemens

SILYZER 200 – Hydrogen Production

Feature / Function

- Best-in-class PEM electrolysis, based on an own developed system and proven Siemens standard components and technical expertise
- King-size power (double digit MW class) and high current density operation for efficient hydrogen production up to 35 bar (3.5 Mpa) output pressure
- Extreme dynamic operation from 0 to max-power combined with a strong lifetime commitment

Benefit

 Leading edge green hydrogen production thanks to the reliable electrolysis operation with a highend system availability

SIEMENS

- Small system footprint for lower investment and optimal integration
- Low TCO, high robustness, low investment risk
- Safety culture & discipline as guarantee – incl. Remote operation and condition monitoring for stateof-the-art electrolysis operation

Next projects Energie Park Mainz

Key statements

- Location: Mainz-Hechtsheim (GER)
- Three high performance electrolysis systems with peak power of 2,1 MW _{el.} Each
- Connection to 10 MW wind-farm
- 1000 kg storage (33 MWh)
- 200 tons target annual output (Trailer-filling station and injection into local gas grid)
- Highly dynamic operation over broad load range (ramp speed 10% per sec.)

Study SILYZER 200

Project Partners: Linde, Stadtwerke Mainz, Siemens, Hochschule RheinMain

Looking ahead: Power-to-value

The energy cell concept

Energy cell can be

- Community
- Factory
- Power plant
- Dedicated storage Facility

Energy cell contains

- Power generation
- Energy storage
- Thermal grids
- Loads
- ICT

Thank you!

- Growing share of distributed power generation and Renewables
- Multiple Stakeholders multiple usage of electricity
- Energy Cells develop Grids remain essential
- Digitization drives change of technology and business models

