

Developing a Hydrogen Infrastructure for Transport in France and Germany A Comparison

David Colomar, European Institute for Energy Research (EIFER), Karlsruhe **Dr.-Ing. Ulrich Bünger**, Ludwig-Bölkow-Systemtechnik GmbH (LBST), Ottobrunn

German-French Office for Renewable Energies (DFBEE - OFAEnR)

"Hydrogen as energy carrier, an industrial approach for 'Energiewende' in France and Germany: A Dream or Reality?"

Tuesday, 24 June 2014 French Embassy Berlin, Wilhelmstraße 69

ludwig bölkow systemtechnik

2

- 1 Developments in France
- 2 Developments in Germany
- ³ Comparison
- Status
- Perspectives

ludwig bölkow systemtechnik

3

Developments in France – David Colomar

- 2 Developments in Germany
- 3 Comparison
- Status
- Perspectives

H₂ Mobilité France

ludwig bölkow systemtechnik

A national implementation roadmap Supported by the French government and gathering: \Rightarrow National and EU associations \Rightarrow Labs and universities ⇒ Utilities ⇒ Electrolyser manufacturers \Rightarrow Hydrogen and service station manufacturers

OEM, FC and car manufacturers

Representatives of regions

FHYP/ nfrastructur Penergies nouvelles Cea Centre Nationa st edf GDE SI **GRT**'gaz M-Phy CET ARFVA Linde H2 Logic AIR LIQUIDE SOLVAY MICHELIN Intelligent RENAULI TRUCKS Energy éhicule du Futur

Source: H2 Mobilité France

© 2014 European Institute for Energy Research Ludwig-Bölkow-Systemtechnik GmbH

June 24

1 H₂ Mobilité France

ludwig bölkow systemtechnik

5

"Cluster" approach focusing on captive fleets

- Driving cycles and charging profiles are well predictable
- Limited number of stations with a high utilisation rate already in the starting phase
- Usually 35 MPa
 35 70 MPa in cross-border areas
- Taking into account EU TEN-T corridors
- An roadmap for the early phase.
 No contradiction with other European « H₂ Mobilities »

Source: H2 Mobilité France

⇒ Easier to reach economic viability

 \Rightarrow Approach is different and complementary to German H₂ Mobility

1 Range Extenders

ludwig bölkow

systemtechnik

BATTERY ELECTRIC DRIVE WITH AN H₂/FC RANGE EXTENDER

- Strategy for the early transition phase enabling:
 - ⇒ Limited investments in infrastructure
 - \Rightarrow To reduce dependency on FC costs
 - \Rightarrow A better use of the good efficiency of the battery
- Battery electric vehicles (BEV) sales are limited but growing in France
- Range extenders are simple to be implemented for car manufacturers with experience in BEVs

B-Class F-Cell

Hybrid

Hy Kangoo

Charging plug FC range extender H2 Tank

Source: CCFA

Example: The MobyPost Project

ludwig bölkow systemtechnik

- Demonstrate interest of H₂ mobility in mail delivery for rural areas
- Develop local and sustainable mobility concept "from sun to wheel"
- Develop 10 FCEVs for special needs of La Poste (ergonomics, speed, range...)
- Develop and implement 2 service stations with onsite hydrogen production

FFFDBACK

- \Rightarrow H₂ Mobility FR can be implemented through industrial operators of captive fleets
- \Rightarrow In analogy with the « Plan national pour le développement des véhicules électriques et hybrides rechargeables », 50,000 BEVs acquired by different industry users and coordinated by UGAP since 2010

N₂

- \Rightarrow Range extender enables to optimize FC operation and reduction of size
- \Rightarrow Electrolysis offers flexibility to electrical grid and integration of fluctuating renewable electricity

Potential of Electrolysis for France

Source: Eurostat

Source: data: RTE, analysis : EIFER

⇒ Low electricity generation costs

- ⇒ Remoteness of regions to central steam reformers
- ⇒ Open capacity market by 2016: grid services
- \Rightarrow CO₂ emissions
 - H_2 from electrolysis: **10 45 g_{CO2}/km**
 - H₂ from steam methane reforming : > 60 g_{co2}/km
- In French context, decarbonisation is optimal for hydrogen from electrolysis
- Optimization strategies for renewable electricity to enable:
 - optimization of the decarbonisation of transport
 - optimization of the **utilization rate** of local resources and/or
 - provision of additional grid services to electricity grid (Power-to-Gas)

EIFEP

Sources: Phyrenees, ADEME. Projet VabHyogaz

8

ludwig bölkow systemtechnik

9

- Developments in France
- 2 Developments in Germany Ulrich Bünger
- 3 Comparison
- Status
- Perspectives

2 REN to H₂ – A Utility's Perspective

ludwig bölkow

Conditions for business cases for REN electricity to hydrogen:

- Dynamic, load flexible and low cost (PEM-)electrolysers
- Low electrolysis CAPEX with \geq 4,000 operating hours per year
- Favourable policy conditions (such as no grid fees)
- Possible H₂-cost parity with hydrogen from SMR (≤3 €/kg_{H2})
 - In addition to above: very high electricity purchase price volatility in long term
- Sufficiently high industry / political interest to develop combined business cases for hydrogen for transport and Power-to-Gas
- Most favourable options:
 - Centralised production with large scale storage in salt caverns where applicable (low spec. storage costs)
 - Onsite production (no hydrogen distribution costs, flexible/robust business model for electric utilities)
- Liquid hydrogen supply not sufficiently flexible for decentralised delivery concepts
- Sufficient hydrogen demand expected and synergies from common use of hydrogen distribution infrastructures
- Regional infrastructure differentiation probable

Source: "EE to H_2 – Integration von erneuerbaren Energien und H_2 -Elektrolyse in Deutschland und Baden-Württemberg", LBST study for EnBW, 2011

A1: on-site (z.B. KA) 2015 – 2020 – 2030

² GermanHy – German H₂ Roadmap 2009

ludwig bölkow systemtechnik

- 'Moderate', 'Resource' and 'Climate' scenarios pull hydrogen from various primary energy sources
- Political goals & framework and technical achievements have major impact on hydrogen mix
- Hydrogen from coal is no longer a German option as CCS has been discarded in the meantime
- Hydrogen infrastructure roll out from 'population centers' to 'the countryside'

Hydrogen production portfolio

Source: GermanHy – Study to answer the question "Where will the hydrogen come from in Germany by 2050?", for the German Ministry of Transport (BMVBS) and NOW, 2009

Hydrogen infrastructure analysis Year of inclusion in network

² MKS – Roll of Power-to-Gas for Transport

ludwig bölkow systemtechnik

Energy policy goals

- Use of hydrogen in FCEVs significantly more energy efficient than of methane in internal combustion engines, BUT higher challenges for hydrogen infrastructure development (resource intensity!)
- Bundling ancillary services with PtG (storage!) possible

Scenario results

- Mobility as part of global energy systems can contribute to 'Energiewende' through Power-to-Gas
- Transport energy demand decreasing in all scenarios, yet only an ambitious use of BEVs and FCEVs helps to reach 40% of transport energy reduction (scenario 3)
- Electricity demand for transport can supersede demand from all other sectors (caused by switch to fuel provision)
- Ambitious use of e-mobility can outgrow REN electricity potential Germany (-> imports required)

Source: Power-to-Gas (PtG) in transport, Status quo and perspectives for development, Study for the Federal German Ministry of Transport and Digital Infrastructure (BMVI) <u>http://www.bmvi.de/SharedDocs/DE/Artikel/UI/UI-MKS/mks-wiss-studien-ptg.html</u>

Primary energy demand (2030) [MJ/km]

Electrity use for transport (2050) [TWh/a]

2 HyUnder – Large Scale Storage in Europe

- ludwig bölkow systemtechnik
- Hydrogen underground storage can become technically & economically feasible (initiated by large scale storage of REN electricity over weeks/months):
 - in regions with feasible geology and in existing natural as caverns / cavern fields,
 - when developing xx TWh scale of fluctuating REN-electricity/surplus (for longer periods of time),
 - if supplying hydrogen to different markets (transport, industry, re-electrification),
 - for low electrolyser CAPEX and electricity costs and
 - with an adapted policy-framework (e.g. rising CO₂-certificate prices, support of e-mobility & FCEVs)

Hydrogen production costs

Source: Assessment of the Potential, the Actors and Relevant Business Cases for Large Scale and Long Term Storage of Renewable Electricity by Hydrogen Underground Storage in Europe", EU-funded R&D project, 2014, <u>www.HyUnder.eu</u> June 24 C 2014 European Institute for Energy Research Ludwig-Bölkow-Systemtechnik GmbH

Achievable hydrogen market prices 13

² H₂ Mobility – Refuelling Infrastructure

ludwig bölkow systemtechnik

Early introduction

- Focus on regions with high station utilization (cities) and trunk roads
- Captive fleet supply
- Combination of 35 MPa und 70 MPa (buses, cars) depending on needs
- Policy support required
- One retail consortium

DAIMLER

Long term

- Supplying also low population regions
- Up to 4,000 fuelling stations (today ca. 14,000 conventional stations)

THE LINDE GROUP

- Gradually phase out policy support
- Open market and free competition

H₂ Mobility

Size distribution of hydrogen stations (Example Germany LBST)

~90 Kilometer liegen dann zwischen den einzelner

Kilometer liegen dann zwischen den einzelnen H₂-Tankstellen auf den Autobahnen rund um die Ballungsgebiete

Wasserstoff-Tankstellen werden 2023 in jeder Metropolregion zur Verfügung stehen 14

June 24

© 2014 European Institute for Energy Research Ludwig-Bölkow-Systemtechnik GmbH

TOTAL

Stationen Ki soll das öffentliche Wasserstoff-Tanklie stellennetz in Deutschland bis 2023 H; umfassen ru

ludwig bölkow systemtechnik

15

- 1 Developments in France
- 2 Developments in Germany
- ³ Comparison
- Status Ulrich Bünger
- Perspectives

ludwig bölkow systemtechnik

National context	Different energy supply structures, geographical conditions and systemtechnik distribution of roles between political actors
Principle goal	Common set of goals set by EU framework (decarbonising energy supply, developing renewable shares), but with differences in weighting and other timelines
Principle approach	Introduction of EU TEN-T-corridors with different roll-out strategies in short-term (industry- versus population centers) but similar long-term scenarios (e-mobility for mass market, (P)HEV, BEV and FCEV, hydrogen: 35/70 MPa)
H ₂ stations - design	35 MPa for buses and fleet vehicles (e.g. range extender) 70 MPa for cars, H ₂ stations from 100 kg _{H2} /day (initial) to 1,000 kg _{H2} /day (broad market)
H ₂ sources/delivery	By-product hydrogen if available, hydrogen from natural gas (central) Electrolysis (preferably decentralised and for grid services)
	Delivery via high pressure trailer, (from case to case as cryogenic liquid) or onsite
Actors	Industry interested in value chain (hydrogen and fuel cells) but with differing branch focus
	Politics with broad federal and regional interest (local value creation as well as usage)
Potential customers	Serving mass markets in long term, differing introduction pathways for private and industry customers in short term (fleet operators, municipal service providers)
Financing	Industry and politics need to develop framework for market introduction jointly (planning ₁₆ for series production, policy measures), possibly in public private partnerships (PPP)
24 June	© 2014 European Institute for Energy Research Ludwig-Bölkow-Systemtechnik GmbH

ludwig bölkow systemtechnik

- 1 Developments in France
- 2 Developments in Germany
- ³ Comparison
- Status
- Perspectives David Colomar

3 Comparison – Perspectives

ludwig bölkow systemtechnik

18

Similar long-term vision

 Transition phase could be accelerated through coordinated joint approach

 Joint studies could accompany and support transition

 Cooperation boost could foster 'Airbus like' strategy

- 35 MPa and 70 MPa in both countries
- Industry- and private customers as focal groups
- Hydrogen supply to become carbon neutral
- Development of cross-border infrastructure (Phase 1 based on HIT)
- Sharing national insights (PtG, range extender)
- Joint contribution to common EU approach by communication interface (shared fuelling station webpage)
- Comparison of transition strategies to support European e-mobility in roll-out phase
- Potential utilisation of synergies by shared hydrogen infrastructures ('energy station ')
- Identification of most relevant industry sector to plan for 'Hydrogen Airbus'

Contact

ludwig bölkow systemtechnik

19

David Colomar +49/721/61051719 david.colomar@eifer.de www.eifer.uni-karlsruhe.de

Dr.-Ing. Ulrich Bünger +49/89/608110-42 <u>ulrich.buenger@lbst.de</u> <u>www.lbst.de</u>

European Institute for Energy Research Daimlerstr. 15 85521 München/Ottobrunn Ludwig-Bölkow-Systemtechnik GmbH Emmy-Noether-Strasse 11 76131 Karlsruhe