logo

Wissenschaftsportal der Französischen Botschaft in Deutschland

mariane

#Energie: Preiswertere, weniger toxische und recycelbare #Lichtsensoren zur #Wasserstoffherstellung

Die Nachahmung der Photosynthese von Pflanzen zur Umwandlung von stabilen und reichlich vorhandenen Molekülen wie H2O und CO2 in energieeffiziente Kraftstoffe (Wasserstoff) oder chemische Produkte für die Industrie zählt heute zu den größten Herausforderungen der Forschung. Der Einsatz der künstlichen Photosynthese in einer Lösung bleibt jedoch bislang aufgrund der Verwendung (zum Einfangen des Sonnenlichts) teurer und giftiger Metallverbindungen begrenzt. Forscher des CNRS (französisches Zentrum für wissenschaftliche Forschung), der CEA (französische Behörde für Atomenergie und alternative Energien) und der Universität Grenoble Alpes haben nun eine effiziente Alternative entwickelt: halbleitende Nanokristalle (sogenannte Quantum Dots – Quantenpunkte) auf Kupfer-, Indium- und Schwefelbasis (preiswertere und weniger toxische Metalle). Die Ergebnisse ihrer Arbeit wurden am 10. April 2018 in der Fachzeitschrift Energy & Environmental Science veröffentlicht.


Bei der künstlichen Photosynthese absorbieren die Chromophoren (auch: Photosensibilisatoren) die Lichtenergie und leiten die Elektronen an den Katalysator weiter, der die chemische Reaktion auslöst. Obwohl in den letzten Jahren zahlreiche Fortschritte bei der Entwicklung von edelmetallfreien Katalysatoren erzielt wurden, basieren die meisten Photosensibilisatoren noch immer auf molekularen Verbindungen auf der Basis seltener und kostspieliger Metalle, wie Ruthenium und Iridium, oder auf halbleitenden anorganischen Materialien, die das giftige Metall Kadmium enthalten.

Durch die Bündelung ihrer Kenntnisse in der Werkstofftechnik (Halbleiter) und der Photokatalyse gelang den Forschern zum ersten Mal die effiziente Herstellung von molekularem Wasserstoff. Sie verbanden zu diesem Zweck halbleitende anorganische Nanokristalle (Quantenpunkte) mit einem Kern aus Kupfer- und Indiumsulfid, geschützt durch eine Zink-/Schwefelhülle, mit einem molekularen Katalysator auf Kobaltbasis. Dieses „Hybrid“-System verbindet die exzellenten Eigenschaften zur Absorption sichtbaren Lichts und die Stabilität von anorganischen Halbleitern mit der Effizienz molekularer Katalysatoren. Kommt es zu einer Überschussproduktion von Vitamin-C (dem Elektronenlieferanten für das System) bewirkt dies eine bemerkenswerte katalytische Aktivität im Wasser – das bislang beste Ergebnis seit der Verwendung cadmiumfreier Quantenpunkte. Die Leistungen dieses Systems liegen dank der großen Stabilität der anorganischen Materialien (die ohne größeren Aktivitätsverlust mehrfach recycelt werden können) weit über denen mit rutheniumbasierten Photosensibilisatoren.

Diese Ergebnisse zeigen das große Potential solcher Hybrid-Systeme zur Herstellung von Wasserstoff aus Sonnenenergie.

 

Quelle: Artikel des CNRS, 10/04/2018, http://www2.cnrs.fr/presse/communique/5541.html
Bild: © Damien Jouvenot, Département de chimie moléculaire (CNRS/Université Grenoble Alpes)

Übersetzerin: Jana Ulbricht, jana.ulbricht@diplomatie.gouv.fr