Kontraktionsfähiges Gel speichert Lichtenergie

 

Sehr komplexe Eiweißverbindungen, die Molekularmotoren lebender Systeme, sind für die wesentlichen Funktionen des lebenden Organismus genauso wichtig wie die Kopie der DNA oder die Eiweißsynthese. Ebenso unverzichtbar sind sie für alle Bewegungsabläufe. Jeder dieser Motoren arbeitet jedoch nur über Entfernungen von wenigen Nanometern. Im Verband von mehreren Millionen jedoch arbeiten sie nicht nur perfekt koordiniert, sondern auch auf makroskopischer Ebene. Ein Muskel, der dank des koordinierten Zusammenspiels zahlreicher Proteinmotoren kontrahiert, veranschaulicht dies sehr beispielhaft. Chemiker versuchen seit langem, diese Bewegung mit künstlichen Motoren herbeizuführen.

 

gel

 

Links: Schematische Darstellung eines Polymergels, dessen Ketten sich durch rotierende Molekularmotoren vernetzen (die blauen und roten Komponenten sind gegeneinander drehbar, sobald sie durch Energie angetrieben werden).
Rechts: Trifft Licht auf, fangen die Motoren an zu rotieren und rollen die Polymerketten zusammen. Das Gel zieht sich daraufhin auf 80 % seines Ausgangsvolumens zusammen. Ein Teil der Lichtenergie wird so in Form von mechanischer Energie gespeichert.

 

Vor diesem Hintergrund hat ein Forscherteam des Institut Charles Sadron des CNRS [1], unter der Leitung von Nicolas Giuseppone, Professor an der Universität Straßburg, ein Polymergel entwickelt, das dank künstlicher Molekularmotoren kontrahiert. Die Ergebnisse ihrer Arbeit wurden am 19. Januar 2015 in der Fachzeitschrift Nature Nanotechnology veröffentlicht.

 

Werden diese nanometergroßen Motoren durch Licht aktiviert, rollen sich die Polymerketten dieses Gels ein und ziehen sich so über mehrere Zentimeter zusammen. Um dies zu erreichen, haben die Forscher die Vernetzungspunkte eines Gels (über die die Polymerketten untereinander verbunden sind) durch rotierende Molekularmotoren ersetzt. Diese laufen auf makroskopischer Ebene zeitlich koordiniert und kontinuierlich.

 

Links: Schematische Darstellung eines Polymergels, dessen Ketten sich durch rotierende Molekularmotoren vernetzen (die blauen und roten Komponenten sind gegeneinander drehbar, sobald sie durch Energie angetrieben werden).

Rechts: Trifft Licht auf, fangen die Motoren an zu rotieren und rollen die Polymerketten zusammen. Das Gel zieht sich daraufhin auf 80 % seines Ausgangsvolumens zusammen. Ein Teil der Lichtenergie wird so in Form von mechanischer Energie gespeichert.

Copyright: Gad Fuks / Nicolas Giuseppone / Mathieu Lejeune

 

Die Lichtenergie, die für den Antrieb dieser Motoren notwendig ist, wird durch das Einrollen der Polymerketten zum Teil in mechanische Energie umgewandelt und im Gel gespeichert. Sammelt sich zu viel Energie im Gel an, kann dieses aufplatzen. Das Team des Institut Charles Sadron will diese Form der Lichtenergiespeicherung künftig kontrolliert nutzen.

 

Das Projekt wird finanziell unterstützt vom Europäischen Forschungsrat (ERC) und der französischen Forschungsförderagentur ANR.

 

[1] CNRS – französisches Zentrum für wissenschaftliche Forschung

 

 

Kontakt:

Institut Charles Sadron – Nicolas Giuseppone, Tel.: + +33 (0)3 88 41 41 66, E-Mail: giuseppone@unistra.fr

 

Quellen:

– BE France 297 – http://www.bulletins-electroniques.com/actualites/77673.htm

– Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors.Quan Li, Gad Fuks, Emilie Moulin, Mounir Maaloum, Michel Rawiso, Igor Kulic, Justin T. Foy, and Nicolas Giuseppone. Nature Nanotechnology, 19 janvier 2015, DOI: 10.1038/NNANO.2014.315.

 

Übersetzerin: Jana Ulbricht, jana.ulbricht@diplomatie.gouv.fr